Can you help by answering this question?

What is an analog voltage?

15 views
in Power system by
Choose two appropriate auxiliary components of a HVDC transmission system from the following P. D.C line inductor Q. A.C line inductor R. Reactive power sources S. Distance relays on D.C line T. Series capacitance on A.C. line 

(A) P and Q (B) P and R (C) Q and S (D) S and T

Your answer

Thanks for your contribution. Feel free to answer this question. Please avoid short answer. Your answer is most welcome. Be genuine.

Upload image or document:

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
Are you a robot ? (Y = Yes / N = No)
To avoid this verification in future, please log in or register.

1 Answer

0 votes
by

Choose two appropriate auxiliary components of a HVDC transmission system from the following P. D.C line inductor Q. A.C line inductor R. Reactive power sources S. Distance relays on D.C line T. Series capacitance on A.C. line 

(A) P and Q (B) P and R (C) Q and S (D) S and T

Related questions

1 answer 13 views

An HVDC link consist of rectifier, inverter transmission line and other equipments. Which one of the following is true for this link ?  (A) The transmission line produces/ supplies reactive power (B) The rectifier consumes reactive power and the inverter supplies reactive power from/ to the respective connected ... power to/ from the respective connected AC systems (D) Both the converters (rectifier and inverter) consume reactive power from the respective connected AC systems

asked May 25, 2018 in Power system by Shimroz123
1 answer 18 views

A transmission line conductor at a river crossing is supported from two towers at height. of 30 m and 90m, above water level. The horizontal distance between the towers is 270m, if the tension in the conductor is 1800 kg and the conductor weight 1 kg/m. What is the clearance between the conductor and the water at a point midway between the towers?

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 21 views

An 800 kV transmission line has a maximum power transfer capacity of P. If it is operated at 400 kV with the series reactance unchanged, the new maximum power transfer capacity is approximately (A) P (B) 2P (C) P / 2 (D) P / 4

asked May 25, 2018 in Power system by Shimroz123
1 answer 19 views

Which of the following is TRUE with respect to HVDC transmission line? (A) For a short distance it is economical over HVAC. (B) In HVDC system, harmonics are not generated. (C) Use of HVDC can improve system stability. (D) Less and cheap terminal, equipments are required in HVDC.

asked May 13, 2018 in High voltage engineering by Shimroz123
0 answers 15 views

Voltages phasors at the two terminals of a transmission line of length 70 km have a magnitude of 1.0 per unit but are 180 degree out of phase. Assuming that the maximum load current in the line is 1/5th of minimum 3-phase fault current. Which one of the following transmission line protection schemes ... pick up at 1.25 times the maximum load current (C) Pilot relaying system with directional comparison scheme (D) Pilot relaying system with segregated phase comparison scheme

asked May 25, 2018 in Power system by Shimroz123
1 answer 14 views

Which of the two generalized constants of a transmission line are equal?  (a) B & C (B) A & B (c) A & D (D) B & D

asked May 13, 2018 in Power system by Shimroz123
0 answers 119 views

A Transmission line conductor has been suspended freely from two towers and has taken the form of a catenary that has c = 487.68m. The span between the two towers is 152 m, and the weight of the conductor is 1160 kg/km. Calculate the length of the conductor.  (A) 487.68 m (B) 152.614 m (C) 5.934 m (D) 11.9 m 

asked Apr 5, 2018 in Electrical Engineering by Shimroz123
1 answer 13 views

The following is correct : (A) P = V x I (B) P = I ² x R (C) P = V ² / R (D) All of the above

asked May 8, 2018 in Electrical Engineering by Shimroz123
1 answer 21 views

A transmission line of 200 km has a certain A, B, C and D parameters. If the length is reduced to 60 km

asked Apr 29, 2018 in Electrical Engineering by Shimroz123
0 answers 19 views

A separately excited d.c. motor fed from single phase full converter with firing angle 60° runs at 1000 r.p.m. If motor is connected to single phase semiconverter with the same firing angle of 60°, it would run at (a) 2000 rpm (b) 1850 rpm (c) 1500 rpm (d) 1000 rpm 

asked May 25, 2018 in DC motor by Shimroz123
1 answer 21 views

Of the following, ____ is different from the group.  a) Windows b) MS-Word c) MS-Excel d) MS-PowerPoint

asked May 13, 2018 in Computer Engineering by Shimroz123
1 answer 283 views

The sequence components of current of a single-phase load connected to a 3-phase system are (A) equal positive and negative sequence components (B) equal positive, negative and zero sequence components (C) vector sum of sequence currents is zero (D) algebraic sum of sequence currents is zero

asked Apr 28, 2018 in Power system by Shimroz123
1 answer 18 views

Choose the most appropriate statement (A) An antenna can radiate only HF signals (B) An antenna can radiate and receive HF signals (C) An antenna can receive only HF signals (D) An antenna can receive and transmit simultaneously HF signals

asked May 12, 2018 in Electrical Engineering by Shimroz123
1 answer 13 views

Choose the most appropriate statement: (A) Bandwidth is defined w.r.t. impedance (B) Bandwidth is defined w.r.t. gain (C) Bandwidth is defined w.r.t. polarization (D) All of the above

asked May 12, 2018 in Electrical Engineering by Shimroz123
1 answer 9 views

A medium line with parameters A, B, C, D is extended by connecting a short line of impedance Z in series The overall ABCD parameters of the series combination will be?

asked Mar 27, 2018 in Power system by Shimroz123
0 answers 20 views

The zero sequence current of a generator for line to ground fault is j 2.4 p.u. The current through the neutral during the fault is (a) j 0.8 p.u (b) j 2.4 p.u. (c) j 0.24 p.u. (d) j 7.2 p.u. 

asked May 25, 2018 in Power system by Shimroz123
1 answer 36 views

In voltage source converter based HVDC transmission system the active power is controlled by changing (A) phase angle of the converter ac input voltage (B) supply frequency of the converter ac input voltage (C) magnitude of the converter ac input voltage (D) DC voltage at the inverter terminals

asked Apr 28, 2018 in High voltage engineering by Shimroz123
0 answers 22 views

A d.c. shunt motor runs at no load speed of 1140 r.p.m. At full load armature reaction weakens the main flux by 5%. Whereas the armature circuit voltage drops by 10%. The full load speed of the motor is (a) 1200 r.p.m. (b) 1080 r.p.m. (c) 1040 r.p.m. (d) 1000 r.p.m.

asked May 25, 2018 in DC motor by Shimroz123
1 answer 8 views

High Voltage DC (HVDC) transmission is mainly used for  (A) bulk power transmission over very long distances (C) inter-connecting two systems with same nominal frequency (C) eliminating reactive power requirement in the operation (D) minimizing harmonics at the converter stations

asked May 25, 2018 in Power system by Shimroz123
1 answer 95 views

A transmission line has 1 P.0 impedance on a base of 11 KV, 100 MVA. On a base of 55 KV. it will have a P.0 impedance of

asked May 3, 2018 in Electric Power Transmission by Shimroz123
1 answer 32 views

A 60 Hz, 320 km lossless line has Bending end voltage 1.0 p.u, The receiving end voltage on no load is?

asked Mar 27, 2018 in Power system by Shimroz123
0 answers 20 views

A synchronous condenser is used at the receiving end of a transmission line for (A) supplying lagging kVA (B) voltage control (C) frequency control (D) maintaining a higher voltage than at the sending end 

asked Jun 4, 2018 in Power system by Shimroz123
1 answer 15 views

For a fixed value of complex power flow in a transmission line having a sending and voltage V, the real power loss will be proportional to  A) V B) v2 C) 1/V2 D)1/V

asked May 20, 2018 in Power system by Shimroz123
2 answers 95 views

The sending end and receiving end voltages of a three-phase transmission line are 10 kV/ph and 9.5 kV/ph, respectively. If the resistance drop is 150 V/ph and receiving end power factor is 0.8, the sending end power factor is (A) 0.745 lagging (B) 0.775 lagging (C) 0.8 lagging (D) 0.85 lagging

asked Apr 28, 2018 in Power system by Shimroz123
1 answer 21 views

The line conductor of a transmission line has an overall diameter of 19.53 mm, weight 0.844 kg/m and an ultimate breaking strength of 7950 kg. If the factor of safety is to be 2, when conductor has an ice of 1 kg/m and a horizontal wind pressure of 1.5 kg/m. What is the vertical sag, corresponding to this loading for a 300 m span level supports?

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 47 views

A 100 km long transmission line is loaded at 110 kV.if the loss of line is 5 MW and the load is 150 MVA, the resistance of the line is?

asked Mar 27, 2018 in Power system by Shimroz123
0 answers 21 views

If diameter of each conductor of a transmission line is ‘d’, then the diameter of n-layer stranded conductor will be (a) (2n – 1) d (b) (2n + 1) d (c) (3n – 1) d (d) (3n + 1) d 

asked May 26, 2018 in Electric Power Transmission by Shimroz123
1 answer 20 views

A two conductor 1 - pi line operates at 50 Hz.The diameter of each conductor is 20 mm and the spacing between the conductors is 3m, The height of conductor above the ground is 6 m. The capacitance of the line to neutral will be?

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 15 views

A two conductor 1 - pi line operates at 50 Hz.The diameter of each conductor is 4 cm and are spaced 6 m apart. What is the capacitive susceptance to neutral per km?

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 11 views

A two conductor 1 - pi line operates at 50 Hz. The diameter of each conductor is 2 cm and are spaced 3m apart. What is the line to line capacitance ?

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 17 views

A two conductor 1 - pi line operates at 50 Hz. The diameter of each conductor is 20 mm and the spacing between conductors is 3m. What is the inductance of each conductor per km?

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 16 views

The conductor of a 10 km long, single phase, two wire line are separated by a distance of 1.5 m. The diameter of each conductor is 1 cm, If the conductors are of copper, the inductance of the circuit is

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 13 views

A transmission line is operating with a Phase shift of 80° between two ends. If the load is suddenly increased A) The phase displacement will increase B) The phase displacement will decrease C) The phase displacement will not change D) The surge impedance will increase

asked May 24, 2018 in Electrical Engineering by Shimroz123
1 answer 50 views

If voltage at the two ends of a transmission line is 132 kV and its reactance is 40 Ohms, the capacity of the line will be: (A) 435.6 MW (B) 217.8 MW(C) 251.5 MW (D) 500 MW

asked Apr 11, 2018 in Computer Engineering by Shimroz123
0 answers 16 views

The effect of corona in high voltage a.c. transmission line is  A) Increased energy loss in the transmission line B) Increased line reactance C) Increased line to line capacitance D) All of the above 

asked Apr 9, 2018 in High voltage engineering by Shimroz123
0 answers 27 views

The d.c. resistance of a conductor due to skin effect is (a) unchanged (b) decreased (c) increased (d) infinite 

asked May 25, 2018 in Power system by Shimroz123
1 answer 20 views

A 800 kV transmission line is having per phase line inductance of 1.1 mH/km and per phase line capacitance of 11.68 nF/km. Ignoring the length of the line, its ideal power transfer capability in MW is (A) 1204 MW (B) 1504 MW (C) 2085 MW (D) 2606 MW

asked May 25, 2018 in Power system by Shimroz123
1 answer 25 views

A loss less transmission line having Surge Impedance Loading (SIL) of 2280 MW is provided with a uniformly distributed series capacitive compensation of 30%. Then, SIL of the compensated transmission line will be (A) 1835 MW (B) 2280 MW (C) 2725 MW (D) 3257 MW

asked May 25, 2018 in Power system by Shimroz123
1 answer 16 views

An overhead transmission line has a span of 240m between level supports. What is the maximum sag if the conductor weight 727 kg/km and has a breaking strength of 6880 kg? Allow the factor of safety of 2. Neglecting wind and ice loading.

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 17 views

 A single-phase transmission line of impedance j 0.8 ohm supplies a resistive load of 500 A at 300 V. The sending end power factor is?

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 119 views

A 100 km transmission line is designed for a nominal voltage of 132 kV and consists of one conductor per phase. The line reactance is 0.726 ohm/km. The static transmission capacity of the line, in MW, would be   (a) 240 (b) 132 (c) 416 (d) 720

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 19 views

A 20-MVA, 6.6-kV, 3-phase alternator is connected to a 3-phase transmission line. The per unit positive-sequence, negative-sequence and zero-sequence impedances of the alternator are j0.1, j0.1 and j0.04 respectively. The neutral of the alternator is connected to ground through an inductive reactor of j0.05 p.u. The per unit positive-, ... The voltage of the alternator neutral with respect to ground during the fault is  (A) 513.8 V (B) 889.9 V (C) 1112.0 V (D) 642.2 V

asked May 25, 2018 in Power system by Shimroz123
0 answers 50 views

A single phase transmission line and a telephone line are both symmetrically strung one below the other, in horizontal configurations, on a common tower, The shortest and longest distances between the phase and telephone conductors are 2.5 m and 3 m respectively. The voltage (volt/km) induced in the telephone circuit, due to 50 Hz current of 100 amps in the power circuit is (A) 4.81 (B) 3.56 (C) 2.29 (D) 1.27

asked May 25, 2018 in Power system by Shimroz123
1 answer 14 views

For a transmission line with negligible losses, the lagging reactive power (VAR) delivered at The receiving end, for a given receiving end voltage, is directly proportional to the?

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 19 views

The time taken for a surge to travel a 600 km long overhead transmission line is?

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 17 views

The transmission line distance protection relay having the property of being inherently directional is (A) impedance relay (B) MHO relay (C) OHM relay (D) reactance relay

asked May 25, 2018 in Power system by Shimroz123
1 answer 12 views

The transmission line feeding power on either side of the main transmission line is called?

asked Mar 27, 2018 in Power system by Shimroz123
1 answer 21 views

State two advantages of P.F. tariff and TOD tariff for the power system concern

asked Oct 12, 2018 in Industry Electrical Systems-II by Shimroz123

Welcome to electronics2electrical.com here you can ask questions related to electrical, electronics, mechanical, telecommunication, instrumentation, computer, mathematics, physics etc.
Be respectful to all the members. Do not copy and paste the answers from other websites which have copyright content. While asking question give full details about it.

Categories

Most popular tags

power motor dc circuit transformer voltage current used system phase resistance factor synchronous load ac energy induction electric generator series frequency between speed capacitor use electrical meter line difference control type mosfet transmission magnetic plant high single instrument bjt unit source advantages function diode and machine winding field define torque parallel amplifier supply shunt thyristor motors electricity arduino maximum time relay armature problem value on transformers types coil diagram state flow ratio material three formula starting direction theorem method emf operating efficiency digital wave microprocessor test instruments inductance loss measure operation connected signal low applications effect single-phase network temperature working constant losses different law wattmeter measuring compare controlled breaker drive device logic rc full switch flux wire resistivity disadvantages free of materials machines angle force converter conductor transistor gain open protection scr core measurement number bridge principle generators reactance circuits negative the friction iron loop short pole battery conservation steam resistors hysteresis computer using analog lines secondary station gate a rectifier inverter linear induced relays nuclear capacitance basic characteristics design direct work rotor electronics ammeter forces diesel damping rlc connection factors capacitors minimum insulation moving regulation running self systems air fault range main stability quality starter igbt eddy alternator ideal rl average 3-phase plants arc thermal error fuzzy biasing dielectric pressure balanced superposition errors copper rotation feedback impedance measured electronic electrons charge inductive transfer explain start off back curve over solar is three-phase tariff locomotive peak bias zener engineering commutator surge conductors rating universal potentiometer density permanent mechanical transducer capacity memory adc excitation two fuse pure harmonics application semiconductor inductor internal pmmc reaction welding resonance traction permeability breakers rms designed electromagnetic si generation brushes switching capacitive shaded rate 1 distribution resistor methods delta star oscillator reluctance simplification algebra 8085 boolean weston dynamometer insulating strength installation definition fuel heating earth units

8,471 questions

7,069 answers

134 comments

3,088 users

...