Engineering Q&A
Why Transformer rating is given in kVA?
in Basic electrical and electronics engineering by

3 Answers

0 like 0 dislike
Best answer

When power transfer from primary winding to secondary winding of transformer there are two losses in transformer one is called core losses this is due to the alternating flux in core and second is copper losses this is due to current flowing in the winding when the transformer is loaded.

The I2R or copper loss is depends on current (I). And core loss is depends on voltage (V). These two losses are not depends on power factor (cos Φ) of the load. So, the temperature rise and rating of transformer is decided by the two losses one copper losses which depends on current (I) and second is core losses which depends on voltage (V). So, losses of transformer depends on V and I that's why the rating of transformer is given as the product of voltage (V) and current (I). This product of voltage and current is called as VA rating.
The VA rating of both side of transformer is same. And this rating is generally expressed in kilo volt ampere rating.

kVA = V1I1/1000 = V2I2/1000
by
selected by
0 like 0 dislike
Transformer Rating is in kVA: The life of insulation of transformer depends upon temperature. Temperature rise results from losses of transformer. The copper loss of transformer depends on the current and the iron loss depends on the voltage. Hence total transformer losses depend on volt-amperes and not on phase angle between voltage and current. The losses are independent of load power factor. To prevent transformer from damage due to temperature rise, it is highly essential to limit the losses. The limiting values are referred as rating. To limit the losses, the operating voltage & current must be maintained within limits. Hence transformer rating is in kVA.
by
0 like 0 dislike

Output power of transformer is given by P= VICosØ, for different types of load i.e (resistive, capacitive, inductive) cosØ changes so, for same voltage and current output power will different, so transformer is designed to operate at particular voltage and current levels and it not designed to deliver particular output power that is why rating of transformer is in KVA. 

OR

As copper loss of a transformer depends on current and iron loss on voltage, Hence total transformer loss depends on volt-ampere and not on phase angle between voltage and current ie. It is independent of load power factor. That is why rating of transformer is in KVA. 

by

Related questions

3 answers
1 answer
2 answers
asked Mar 10, 2018 in Power quality by Quiz | 86 views
1 answer
1 answer
Welcome to electronics2electrical.com, where students and teachers can ask and answer any question. Get help and answers to any engineering problem including Electrical, electronics, mechanical, telecommunication, instrumentation, computer, mathematics, physics etc. Get answers to questions. Help is always 100% free!

Most popular tags

power motor dc circuit transformer voltage current system used phase resistance factor ac load synchronous induction energy electric generator electrical series frequency capacitor between plant line speed transmission use meter type advantages difference single mosfet control function instrument problem magnetic diode amplifier high bjt machine unit source motors and diagram winding shunt field parallel define electricity torque value maximum time relay types arduino supply digital armature applications thyristor working transformers wave on flow operation three coil material instruments state ratio signal emf effect formula efficiency theorem method disadvantages starting microprocessor network test operating direction controlled different logic transistor single-phase scr loss temperature connected rc law force inductance compare measure station wire low conductor principle wattmeter full characteristics measuring constant measurement breaker losses device converter bridge linear materials nuclear matrix flux drive resistivity of machines angle switch free rectifier protection core circuits battery solar gain thermal loop generators open negative analog number lines friction basic reactance short gate pole inverter the conservation diesel iron resistors capacitance engineering using direct main electronic electronics a steam induced relays hysteresis universal transducer computer feedback range distribution work secondary igbt algebra pmmc plants factors capacitors dielectric controller regulation systems design air fault components rotor cable starter oscillator eddy alternator application semiconductor ammeter rl average forces damping rlc connection zener electromagnetic biasing minimum insulation pressure balanced permanent moving errors running copper self analysis impedance stability quality start ideal curve over commutation is 3-phase arc permeability peak bias error fuzzy commutator conductors superposition density mechanical rotation construction measured electrons charge memory inductive two transfer explain fuse methods off back three-phase tariff locomotive installation welding heating rms surge rating generation potentiometer coupled shaded rate capacity storage adc excitation active pure resistor harmonics reluctance microcontroller voltmeter inductor internal 8085 cro reaction insulating overhead hydro resonance traction definition breakers earth

9,199 questions

7,946 answers

158 comments

3,292 users

9,199 questions
7,946 answers
158 comments
3,292 users