Engineering Q&A
working of distortion factor meter with block diagram
by
retagged by

1 Answer

0 like 0 dislike

image


Working : Initially the switch S is kept at position 1.The attenuator gets excluded and the bridge T network is adjusted for full suppression of fundamental frequency and hence we get minimum output condition.This condition indicated that the bridge T network is tuned to the fundamental frequency with full suppression of it.Then switch is moved at position 2, then the bridge T network is excluded.The attenuator is adjusted such that same reading as previous is obtained on the meter.Thus the total rms distortion is indicated by the reading of attenuator. 

by

Related questions

1 answer
asked Sep 3, 2019 by anonymous1 | 46 views
2 answers
1 answer
1 answer
1 answer
asked Mar 25, 2018 in Basic concepts by anonymous1 | 49 views
Welcome to electronics2electrical.com, where students and teachers can ask and answer any question. Get help and answers to any engineering problem including Electrical, electronics, mechanical, telecommunication, instrumentation, computer, mathematics, physics etc. Get answers to questions. Help is always 100% free!

Most popular tags

power motor dc circuit transformer voltage current system used phase resistance factor ac load synchronous induction energy electric generator electrical series frequency capacitor between plant line speed transmission use meter type advantages difference single mosfet control function instrument problem magnetic diode amplifier high bjt machine unit source motors and diagram winding shunt field parallel define electricity torque value maximum time relay types arduino supply digital armature applications thyristor working transformers wave on flow operation three coil material instruments state ratio signal emf effect formula efficiency theorem method disadvantages starting microprocessor network test operating direction controlled different logic transistor single-phase scr loss temperature connected rc law force inductance compare measure station wire low conductor principle wattmeter full characteristics measuring constant measurement breaker losses device converter bridge linear materials nuclear matrix flux drive resistivity of machines angle switch free rectifier protection core circuits battery solar gain thermal loop generators open negative analog number lines friction basic reactance short gate pole inverter the conservation diesel iron resistors capacitance engineering using direct main electronic electronics a steam induced relays hysteresis universal transducer computer feedback range distribution work secondary igbt algebra pmmc plants factors capacitors dielectric controller regulation systems design air fault components rotor cable starter oscillator eddy alternator application semiconductor ammeter rl average forces damping rlc connection zener electromagnetic biasing minimum insulation pressure balanced permanent moving errors running copper self analysis impedance stability quality start ideal curve over commutation is 3-phase arc permeability peak bias error fuzzy commutator conductors superposition density mechanical rotation construction measured electrons charge memory inductive two transfer explain fuse methods off back three-phase tariff locomotive installation welding heating rms surge rating generation potentiometer coupled shaded rate capacity storage adc excitation active pure resistor harmonics reluctance microcontroller voltmeter inductor internal 8085 cro reaction insulating overhead hydro resonance traction definition breakers earth

9,199 questions

7,946 answers

158 comments

3,292 users

9,199 questions
7,946 answers
158 comments
3,292 users