Welcome to electrical and electronics engineering discussion website, Please login or register to continue.

58 views
in Digital Instrumentation by
Standard Commands for Programmable Instruments (SCPI)

Your answer

Thanks for your contribution. Feel free to answer this question. Please avoid short answer. Your answer is most welcome. Be genuine.

Upload image or document:

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
Are you a robot ? (Y = Yes / N = No)
To avoid this verification in future, please log in or register.

2 Answers

+1 vote
by
 
Best answer

Standard Commands for Programmable Instruments (SCPI)

image

image

image

image

image

0 votes
by

Standard Commands for Programmable Instruments (SCPI)

SCPI stands for Standard Commands for Programmable Instruments it is often pronounced as Skippy.

SCPI is a instrument language that control the functions of instrument in standardized form define by IEEE 488.2.

It is the standardized command between computer and instrument.

IEEE 488.2 defines how to send command to instrument and how to respond to computer.

Two similar instrument compatible with IEEE 488.2 each using completely different instruction.

SCPI organized in three sections one is syntax and style second is command reference third is data interchange format.


 Lets discuss about each block

Measurement function : transforms signal into preprocessed form.

Signal routing : connects the signal to internal function of instrument.

Input : filtering, bias and attenuation and condition the input signal.

Sense : control range, resolution and convert signal data into internal data that can be managed by user.

Calculate : calculation function uses variables such as converting units and rise time, fall time and frequency.

Format : transform instrument data to compatible form.

Signal generation : converts internal data.

Signal routing : it is connected to output which connects to outside world.

Output : filtering, bias and attenuation and condition the signal after signal generation.

Source : amplitude modulation, power, current, voltage and frequency from these parameter and internal data it generates signals.

Calculate : calculate data and convert application data and change units and domains.

Format : transform data to form compatible with internal function of instrument.

Trigger : it is for triggering.

Memory : memory is for storing data in instrument.

Display : for presentation.


Welcome to Q&A site for electrical and electronics engineering discussion for diploma, B.E./B.Tech, M.E./M.Tech, & PhD study.
If you have a new question please ask in English.
If you want to help this community answer these questions.

Categories

Most popular tags

power motor dc circuit voltage transformer current used system phase resistance factor load synchronous energy ac induction generator electric series frequency capacitor use speed between electrical meter line type mosfet control transmission difference magnetic plant high single instrument bjt source advantages function diode machine unit winding torque field parallel amplifier define supply thyristor motors arduino shunt maximum relay armature problem electricity time and value on transformers types coil diagram state flow ratio material three starting direction theorem method emf formula operating efficiency digital wave microprocessor test instruments loss measure operation connected low applications effect single-phase working losses different network law wattmeter inductance temperature measuring constant signal controlled breaker device full compare flux drive wire resistivity logic rc materials machines angle force switch disadvantages converter transistor gain protection scr core measurement number free bridge principle generators reactance circuits negative friction open pole conductor conservation steam iron loop resistors hysteresis short computer using lines secondary station battery rectifier inverter linear induced relays nuclear regulation design analog work rotor electronics gate forces diesel damping rlc connection factors capacitance capacitors minimum insulation basic moving running self systems air fault range direct main stability quality starter igbt eddy ideal ammeter rl 3-phase plants arc thermal error fuzzy biasing dielectric pressure balanced superposition errors rotation characteristics feedback impedance measured electronic inductive start alternator off back curve over solar average three-phase tariff locomotive peak bias zener commutator surge rating universal potentiometer density permanent mechanical copper transducer capacity electrons memory adc excitation transfer explain fuse pure harmonics application of inductor internal pmmc reaction welding resonance traction permeability breakers rms designed electromagnetic si generation brushes switching capacitive shaded rate distribution methods delta star oscillator reluctance semiconductor simplification algebra 8085 boolean weston dynamometer insulating strength installation definition fuel heating earth units neutral rated engineering conductors coefficient filter controller usually reverse
...