# An overhead transmission line has a span of 240m between level ...

16 views

An overhead transmission line has a span of 240m between level supports. What is the maximum sag if the conductor weight 727 kg/km and has a breaking strength of 6880 kg? Allow the factor of safety of 2. Neglecting wind and ice loading.

An overhead transmission line has a span of 240m between level supports. 1.52 m is the maximum sag if the conductor weight 727 kg/km and has a breaking strength of 6880 kg? Allow the factor of safety of 2. Neglecting wind and ice loading.

## Related questions

An overhead transmission line has a span of 260 m. The weight of the conductor is 0.68 kg/m. The maximum allowable tension in the line is 1550 kg. Maximum sag of the line should be (a) 5.8 m (b) 4.6 m (c) 2.7 m (d) 3.7 m

An 800 kV transmission line has a maximum power transfer capacity of P. If it is operated at 400 kV with the series reactance unchanged, the new maximum power transfer capacity is approximately (A) P (B) 2P (C) P / 2 (D) P / 4

The line conductor of a transmission line has an overall diameter of 19.53 mm, weight 0.844 kg/m and an ultimate breaking strength of 7950 kg. If the factor of safety is to be 2, when conductor has an ice of 1 kg/m and a horizontal wind pressure of 1.5 kg/m. What is the vertical sag, corresponding to this loading for a 300 m span level supports?

A long overhead transmission line is terminated by its characteristic impedance. Under this operating condition, the ratio of the voltage to the current at different points along the line will?

The time taken for a surge to travel a 600 km long overhead transmission line is?

A voltage of 1000 kV is applied to an overhead line with its receiving end open. If the surge impedance of the line is 500 ohm, then the total surge power in the line ill

To increase the visual critical voltage of cporona for an overhead line, one solid phase-conductor is replaced by a "bundle" of four smaller conductors per phase, having an aggregate cross-sectional area equal to that of the solid conductor. If the radius of the solid conductor is 40 mm, then the radius of each of the bundle conductors would be?

Effect of increase in temperature in an overhead transmission line is (a) to increase stress and length both (b) to decrease stress and length both (c) to decrease stress and increase length (d) None of the above

For a 66 kV line having span of 200 meters between towers the approximate sag will be 2 m. If the span is double the sag will be:  (A) 1 m (B) 2 m (C) 4m (D) 8m

A three phase overhead transmission line has its conductors horizontally spaced with spacing between adjacent conductors equal to 'd'. if now the conductors of the line are rearranged to form and the equilateral triangle of sides equal to 'd' then?

For a single phase overhead line having solid copper conductors of diameter 1 cm, spaced 60 cm between centers, the inductance in mH/km is?

An HVDC link consist of rectifier, inverter transmission line and other equipments. Which one of the following is true for this link ?  (A) The transmission line produces/ supplies reactive power (B) The rectifier consumes reactive power and the inverter supplies reactive power from/ to the respective connected ... power to/ from the respective connected AC systems (D) Both the converters (rectifier and inverter) consume reactive power from the respective connected AC systems

A single-line-to-ground fault on a overhead transmission line creates (A) voltage sag (B) voltage swell (C) over voltage (D) voltage flicker

The presence of earth in case of overhead transmission line (a) increases capacitance (b) increases inductance (c) decreases capacitance (d) decreases inductance

Surge impedance of overhead transmission line is normally in the order of (a) 1- 5 ohms (c) 300 - 500 ohms (b) 20 - 30 ohms (d) 300000 - 500000 ohms

In terms of cost, overhead transmission line is better than underground transmission line in the field of   (a) Insulation (b) Right of way (c) Visibility (d) None of these

For an existing ac transmission line, the string efficiency is 80%, if dc voltage is supplied for the same setup, the string efficiency will be?

lf a travelling-wave travelling along a loss-less overhead line does not result in any reflection after it has reached the far end, then the far end of the line is

A synchronous condenser is used at the receiving end of a transmission line for (A) supplying lagging kVA (B) voltage control (C) frequency control (D) maintaining a higher voltage than at the sending end

Choose two appropriate auxiliary components of a HVDC transmission system from the following P. D.C line inductor Q. A.C line inductor R. Reactive power sources S. Distance relays on D.C line T. Series capacitance on A.C. line  (A) P and Q (B) P and R (C) Q and S (D) S and T

A 800 kV transmission line is having per phase line inductance of 1.1 mH/km and per phase line capacitance of 11.68 nF/km. Ignoring the length of the line, its ideal power transfer capability in MW is (A) 1204 MW (B) 1504 MW (C) 2085 MW (D) 2606 MW

A loss less transmission line having Surge Impedance Loading (SIL) of 2280 MW is provided with a uniformly distributed series capacitive compensation of 30%. Then, SIL of the compensated transmission line will be (A) 1835 MW (B) 2280 MW (C) 2725 MW (D) 3257 MW

Voltages phasors at the two terminals of a transmission line of length 70 km have a magnitude of 1.0 per unit but are 180 degree out of phase. Assuming that the maximum load current in the line is 1/5th of minimum 3-phase fault current. Which one of the following transmission line protection schemes ... pick up at 1.25 times the maximum load current (C) Pilot relaying system with directional comparison scheme (D) Pilot relaying system with segregated phase comparison scheme

For a fixed value of complex power flow in a transmission line having a sending and voltage V, the real power loss will be proportional to  A) V B) v2 C) 1/V2 D)1/V

Which of the two generalized constants of a transmission line are equal?  (a) B & C (B) A & B (c) A & D (D) B & D

The sending end and receiving end voltages of a three-phase transmission line are 10 kV/ph and 9.5 kV/ph, respectively. If the resistance drop is 150 V/ph and receiving end power factor is 0.8, the sending end power factor is (A) 0.745 lagging (B) 0.775 lagging (C) 0.8 lagging (D) 0.85 lagging

A single-phase transmission line of impedance j 0.8 ohm supplies a resistive load of 500 A at 300 V. The sending end power factor is?

A 100 km long transmission line is loaded at 110 kV.if the loss of line is 5 MW and the load is 150 MVA, the resistance of the line is?

A 100 km transmission line is designed for a nominal voltage of 132 kV and consists of one conductor per phase. The line reactance is 0.726 ohm/km. The static transmission capacity of the line, in MW, would be   (a) 240 (b) 132 (c) 416 (d) 720

A transmission line is operating with a Phase shift of 80° between two ends. If the load is suddenly increased A) The phase displacement will increase B) The phase displacement will decrease C) The phase displacement will not change D) The surge impedance will increase

Earth wire on EHV overhead transmission line is provided to protect the line against:

What is the sag for a span of 400m, if the ultimate tensile strength of conductor is 6000 kgf, and the weight of conductor is 550 kgf/km? Factor of safety is 2.

A transmission line has 1 P.0 impedance on a base of 11 KV, 100 MVA. On a base of 55 KV. it will have a P.0 impedance of

A transmission line of 200 km has a certain A, B, C and D parameters. If the length is reduced to 60 km

A Transmission line conductor has been suspended freely from two towers and has taken the form of a catenary that has c = 487.68m. The span between the two towers is 152 m, and the weight of the conductor is 1160 kg/km. Calculate the length of the conductor.  (A) 487.68 m (B) 152.614 m (C) 5.934 m (D) 11.9 m

A 20-MVA, 6.6-kV, 3-phase alternator is connected to a 3-phase transmission line. The per unit positive-sequence, negative-sequence and zero-sequence impedances of the alternator are j0.1, j0.1 and j0.04 respectively. The neutral of the alternator is connected to ground through an inductive reactor of j0.05 p.u. The per unit positive-, ... The voltage of the alternator neutral with respect to ground during the fault is  (A) 513.8 V (B) 889.9 V (C) 1112.0 V (D) 642.2 V

A generator is connected through a 20 MVA, 13.8/138 kV step down transformer, to a transmission line. At the receiving end of the line a load is supplied through a step down transformer of 10 MVA, 138/69 kV rating. A 0.72 pu. load, evaluated on load side transformer ratings as base values , is supplied from the above system. For system base values of 10 MVA and 69 kV in load circuit, the value of the load (in per unit) in generator will be (A) 36 (B) 1.44 (C) 0.72 (D) 0.18

A single phase transmission line and a telephone line are both symmetrically strung one below the other, in horizontal configurations, on a common tower, The shortest and longest distances between the phase and telephone conductors are 2.5 m and 3 m respectively. The voltage (volt/km) induced in the telephone circuit, due to 50 Hz current of 100 amps in the power circuit is (A) 4.81 (B) 3.56 (C) 2.29 (D) 1.27

For a transmission line with negligible losses, the lagging reactive power (VAR) delivered at The receiving end, for a given receiving end voltage, is directly proportional to the?

A transmission line conductor at a river crossing is supported from two towers at height. of 30 m and 90m, above water level. The horizontal distance between the towers is 270m, if the tension in the conductor is 1800 kg and the conductor weight 1 kg/m. What is the clearance between the conductor and the water at a point midway between the towers?

If in a short transmission line, resistance and inductance are found to be equal and regulation appear. to be zero, then the load will?

In a DC transmission line?

The transmission line distance protection relay having the property of being inherently directional is (A) impedance relay (B) MHO relay (C) OHM relay (D) reactance relay

The transmission line feeding power on either side of the main transmission line is called?