Engineering Q&A

Distributed under Creative Commons Attribution-ShareAlike - CC BY-SA.

in Lesson 2 Generation, Transmission and Distribution of Electric Power an Overview by

1 Answer

0 votes

Some important components/equipments in substation 

As told earlier, the function of a substation is to receive power at some voltage through incoming lines and transmit it at some other voltage through outgoing lines. So the most important equipment in a substation is transformer(s). However, for flexibility of operation and protection transformer and lines additional equipments are necessary. 

Suppose the transformer goes out of order and maintenance work is to be carried out. Naturally the transformer must be isolated from the incoming as well as from the outgoing lines by using special type of heavy duty (high voltage, high current) switches called circuit breakers. Thus a circuit breaker may be closed or opened manually (functionally somewhat similar to switching on or off a fan or a light whenever desired with the help of a ordinary switch in your house) in substation whenever desired. However unlike a ordinary switch, a circuit breaker must also operate (i.e., become opened) automatically whenever a fault occurs or overloading takes place in a feeder or line. To achieve this, we must have a current sensing device called CT (current transformer) in each line. A CT simply steps down the large current to a proportional small secondary current. Primary of the CT is connected in series with the line. A 1000 A/5 A CT will step down the current by a factor of 200. So if primary current happens to be 800 A, secondary current of the CT will be 4 A. Suppose the rated current of the line is 1000 A, and due to any reason if current in the line exceeds this limit we want to operate the circuit breaker automatically for disconnection. In figure 2.7 the basic scheme is presented to achieve this. The secondary current of the CT is fed to the relay coil of an overcurrent relay. Here we are not going into constructional and operational details of a over current relay but try to tell how it functions. Depending upon the strength of the current in the coil, an ultimately an electromagnetic torque acts on an aluminum disc restrained by a spring. Spring tension is so adjusted that for normal current, the disc does not move. However, if current exceeds the normal value, torque produced will overcome the spring tension to rotate the disc about a vertical spindle to which a long arm is attached. To the arm a copper strip is attached as shown figure 2.8. Thus the arm too will move whenever the disk moves. 


The relay has a pair of normally opened (NO) contacts 1 & 2. Thus, there will exist open circuit between 1 & 2 with normal current in the power line. However, during fault condition in the line or overloading, the arm moves in the anticlockwise direction till it closes the terminals 1 & 2 with the help of the copper strip attached to the arm as explained pictorially in the figure 2.8. This short circuit between 1 & 2 completes a circuit comprising of a battery and the trip coil of the circuit breaker. The opening and closing of the main contacts of the circuit breaker depends on whether its trip coil is energized or not. It is interesting to note that trip circuit supply is to be made independent of the A.C supply derived from the power system we want to protect. For this reason, we expect batteries along with battery charger to be present in a substation. Apart from above there will be other types of protective relays and various meters indicating current, voltage, power etc. To measure and indicate the high voltage (say 6 kV) of the line, the voltage is stepped down to a safe value (say 110V) by transformer called potential transformer (PT). Across the secondary of the PT, MI type indicating voltmeter is connected. For example a voltage rating of a PT could be 6000 V/110 V. Similarly, Across the secondary we can connect a low range ammeter to indicate the line current.

Version 2 EE IIT, Kharagpur 


Related questions

1 answer
1 answer
1 answer

Welcome to here you can ask questions related to electrical, electronics, mechanical, telecommunication, instrumentation, computer, mathematics, physics etc.
Be respectful to all the members. Do not copy and paste the answers from other websites which have copyright content. While asking question give full details about it.

Most popular tags

power motor dc circuit transformer voltage current used system phase resistance factor synchronous load ac energy induction electric generator series frequency between speed capacitor use electrical meter line difference control type mosfet transmission magnetic plant high single instrument bjt unit source advantages function diode and machine winding field define torque parallel amplifier supply shunt thyristor motors electricity arduino maximum time relay armature problem value on transformers types diagram coil state flow ratio material three formula starting direction theorem method emf operating efficiency digital wave microprocessor test instruments inductance loss measure operation connected signal low applications effect single-phase network temperature working constant compare losses different law wattmeter measuring controlled breaker drive device logic rc full switch flux wire resistivity disadvantages free of materials machines angle force converter conductor transistor gain open protection scr core measurement number bridge principle generators reactance circuits negative the friction iron loop short pole battery conservation steam resistors hysteresis computer using analog lines secondary station gate a rectifier inverter linear induced relays nuclear capacitance basic characteristics design direct work rotor electronics ammeter forces diesel damping rlc connection factors capacitors minimum insulation moving regulation running self systems air fault range main stability quality starter igbt eddy alternator ideal rl average 3-phase plants arc thermal error fuzzy biasing dielectric pressure balanced superposition errors copper rotation feedback impedance measured electronic electrons charge inductive transfer explain start off back curve over solar is three-phase tariff locomotive peak bias zener engineering commutator surge conductors rating universal potentiometer density permanent mechanical transducer capacity memory adc excitation two fuse pure harmonics application semiconductor inductor internal pmmc reaction welding resonance traction permeability breakers describe rms designed electromagnetic si generation brushes switching capacitive shaded rate 1 distribution resistor methods delta star oscillator reluctance simplification algebra 8085 boolean weston dynamometer insulating strength installation definition fuel heating earth
8,600 questions
7,200 answers
3,092 users