Welcome to electrical and electronics engineering discussion website, Please login or register to continue.

21 views
in Lesson 2 Generation, Transmission and Distribution of Electric Power an Overview by
Distributed under Creative Commons Attribution-ShareAlike - CC BY-SA.

Your answer

Thanks for your contribution. Feel free to answer this question. Please avoid short answer. Your answer is most welcome. Be genuine.

Upload image or document:

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
Are you a robot ? (Y = Yes / N = No)
To avoid this verification in future, please log in or register.

1 Answer

0 votes
by

2.5 Transmission of power

The huge amount of power generated in a power station (hundreds of MW) is to be transported over a long distance (hundreds of kilometers) to load centers to cater power to consumers with the help of transmission line and transmission towers as shown in figure 2.5. 

image

To give an idea, let us consider a generating station producing 120 MW power and we want to transmit it over a large distance. Let the voltage generated (line to line) at the alternator be 10 kV. Then to transmit 120 MW of power at 10 kV, current in the transmission line can be easily calculated by using power formula circuit (which you will learn in the lesson on A.C circuit analysis) for 3-phases follows: 

image

Instead of choosing 10 kV transmission voltage, if transmission voltage were chosen to be 400 kV, current value in the line would have been only 261.5 A. So sectional area of the transmission line (copper conductor) will now be much smaller compared to 10 kV transmission voltage. In other words the cost of conductor will be greatly reduced if power is transmitted at higher and higher transmission voltage. The use of higher voltage (hence lower current in the line) reduces voltage drop in the line resistance and reactance. Also transmission losses is reduced. Standard transmission voltages used are 132 kV or 220 kV or 400 kV or 765 kV depending upon how long the transmission lines are. Therefore, after the generator we must have a step up transformer to change the generated voltage (say 10 kV) to desired transmission voltage (say 400 kV) before transmitting it over a long distance with the help of transmission lines supported at regular intervals by transmission towers. It should be noted that while magnitude of current decides the cost of copper, level of voltage decides the cost of insulators. The idea is, in a spree to reduce the cost of copper one can not indefinitely increase the level of transmission voltage as cost of insulators will offset the reduction copper cost. At the load centers voltage level should be brought down at suitable values for supplying different types of consumers. Consumers may be (1) big industries, such as steel plants, (2) medium and small industries and (3) offices and domestic consumers. Electricity is purchased by different consumers at different voltage level. For example big industries may purchase power at 132 kV, medium and big industries purchase power at 33 kV or 11 kV and domestic consumers at rather low voltage of 230V, single phase. Thus we see that 400 kV transmission voltage is to be brought down to different voltage levels before finally delivering power to different consumers. To do this we require obviously step down transformers.


Version 2 EE IIT, Kharagpur  

Welcome to Q&A site for electrical and electronics engineering discussion for diploma, B.E./B.Tech, M.E./M.Tech, & PhD study.
If you have a new question please ask in English.
If you want to help this community answer these questions.

Categories

Most popular tags

power motor dc circuit voltage transformer current used system phase resistance factor load synchronous energy ac induction generator electric series frequency capacitor use speed between electrical meter line type mosfet control transmission difference magnetic plant high single instrument bjt source advantages function diode machine unit winding torque field parallel amplifier define supply thyristor motors arduino shunt maximum relay armature problem electricity time and value on transformers types coil diagram state flow ratio material three starting direction theorem method emf formula operating efficiency digital wave microprocessor test instruments loss measure operation connected low applications effect single-phase working losses different network law wattmeter inductance temperature measuring constant signal controlled breaker device full compare flux drive wire resistivity logic rc materials machines angle force switch disadvantages converter transistor gain protection scr core measurement number free bridge principle generators reactance circuits negative friction open pole conductor conservation steam iron loop resistors hysteresis short computer using lines secondary station battery rectifier inverter linear induced relays nuclear regulation design analog work rotor electronics gate forces diesel damping rlc connection factors capacitance capacitors minimum insulation basic moving running self systems air fault range direct main stability quality starter igbt eddy ideal ammeter rl 3-phase plants arc thermal error fuzzy biasing dielectric pressure balanced superposition errors rotation characteristics feedback impedance measured electronic inductive start alternator off back curve over solar average three-phase tariff locomotive peak bias zener commutator surge rating universal potentiometer density permanent mechanical copper transducer capacity electrons memory adc excitation transfer explain fuse pure harmonics application of inductor internal pmmc reaction welding resonance traction permeability breakers rms designed electromagnetic si generation brushes switching capacitive shaded rate distribution methods delta star oscillator reluctance semiconductor simplification algebra 8085 boolean weston dynamometer insulating strength installation definition fuel heating earth units neutral rated engineering conductors coefficient filter controller usually reverse
...