Engineering Q&A
Also, highlight the problem faced during parallel operation.
in Unit 1 by
recategorized by

1 Answer

0 like 0 dislike
Best answer

Parallel operation of IGBT:

Parallel operation of IGBT is done for obtaining high current rating. Paralleling of IGBT reduces conduction losses and thermal stress. IGBT combines the qualities of BJT and MOSFET. So, IGBT have both negative and positive temperature coefficient. Means for collector current up to about 70% of rated value IGBT shows negative temperature coefficient and after that IGBT shows positive temperature coefficient. For example, if IGBT is rated for 10A then for up to 7A the IGBT will show negative temperature coefficient and after that up to 10A IGBT will show positive temperature coefficient.

For successful parallel operation of IGBT

1.Each IGBT should have its own gate resistor.

2.The arrangement of the layout of the chips should be such that the current flow path should be symmetrical.

3.The IGBT should be thermally coupled by mounting them on the same heatsink.


image


Problem faced during parallel operation of IGBT:

  • IGBT have static and dynamic current sharing problem.
  • The static current sharing problem is related to magnitudes of individual collector current.
  • The dynamic current sharing problem is related to turning on and  turning off times
  • For better current sharing in parallel IGBT require gate-emitter threshold voltage and transconductance (g) which is the ratio of collector current (Ic) to gate voltage (VGE) to match.
  • The turning on and turning off time of IGBTs must be same.
  • High frequency may cause dynamic unbalance problem.
  • A drive circuit is needed for equal turn on and turn off time.
  • IGBTs must share losses equally otherwise IGBT may get failure due to thermal differences.
by
selected by

Related questions

1 answer
1 answer
1 answer
1 answer
2 answers
1 answer
1 answer
1 answer
asked Sep 13, 2017 in Power Electronics by Quiz | 46 views
1 answer
asked Sep 13, 2017 in Power Electronics by Quiz | 76 views
1 answer
Welcome to electronics2electrical.com, where students and teachers can ask and answer any question. Get help and answers to any engineering problem including Electrical, electronics, mechanical, telecommunication, instrumentation, computer, mathematics, physics etc. Get answers to questions. Help is always 100% free!

Most popular tags

power motor dc circuit transformer voltage current system used phase resistance factor ac load synchronous induction energy electric generator electrical series frequency capacitor between plant line speed transmission use meter type advantages difference single mosfet control function instrument problem magnetic diode amplifier high bjt machine unit source motors and diagram winding shunt field parallel define electricity torque value maximum time relay types arduino supply digital armature applications thyristor working transformers wave on flow operation three coil material instruments state ratio signal emf effect formula efficiency theorem method disadvantages starting microprocessor network test operating direction controlled different logic transistor single-phase scr loss temperature connected rc law force inductance compare measure station wire low conductor principle wattmeter full characteristics measuring constant measurement breaker losses device converter bridge linear materials nuclear matrix flux drive resistivity of machines angle switch free rectifier protection core circuits battery solar gain thermal loop generators open negative analog number lines friction basic reactance short gate pole inverter the conservation diesel iron resistors capacitance engineering using direct main electronic electronics a steam induced relays hysteresis universal transducer computer feedback range distribution work secondary igbt algebra pmmc plants factors capacitors dielectric controller regulation systems design air fault components rotor cable starter oscillator eddy alternator application semiconductor ammeter rl average forces damping rlc connection zener electromagnetic biasing minimum insulation pressure balanced permanent moving errors running copper self analysis impedance stability quality start ideal curve over commutation is 3-phase arc permeability peak bias error fuzzy commutator conductors superposition density mechanical rotation construction measured electrons charge memory inductive two transfer explain fuse methods off back three-phase tariff locomotive installation welding heating rms surge rating generation potentiometer coupled shaded rate capacity storage adc excitation active pure resistor harmonics reluctance microcontroller voltmeter inductor internal 8085 cro reaction insulating overhead hydro resonance traction definition breakers earth

9,199 questions

7,946 answers

158 comments

3,292 users

9,199 questions
7,946 answers
158 comments
3,292 users