in Electrical Engineering by

2 Answers

0 like 0 dislike
by
It convert ac into pulsating dcvoltage using only half cycle of applied AC voltage the Basic circuit arrangement of half wave rectifier consist of only 1 diode which can only rectify half cycle of AC current at the time of negative of cycle diode is in Reverse bias condition there is no current flows through circuit
0 like 0 dislike
by

working of Half wave rectifier


image


The half-wave rectifier circuit using a semiconductor diode (D) with a load resistance RL but no smoothing filter is given in the figure. The diode is connected in series with the secondary of the transformer and the load resistance RL. The primary of the transformer is being connected to the ac supply mains. The ac voltage across the secondary winding changes polarities after every half cycle of the input wave. During the positive half-cycles of the input ac voltage i.e. when the upper end of the secondary winding is positive w.r.t. its lower end, the diode is forward biased and therefore conducts current. If the forward resistance of the diode is assumed to be zero (in practice, however, a small resistance exists) the input voltage during the positive half-cycles is directly applied to the load resistance RL, making its upper-end positive w.r.t. its lower end. The waveforms of the output current and output voltage are of the same shape as that of the input ac voltage. During the negative half cycles of the input ac voltage i.e. when the lower end of the secondary winding is positive w.r.t. its upper end, the diode is reverse biased and so does not conduct. Thus during the negative half cycles of the input ac voltage, the current through and the voltage across the load remains zero. The reverse current, being very small in magnitude, is neglected. Thus for the negative half cycles, no power is delivered to the load. Thus the output voltage (VL) developed across load resistance RL is a series of positive half cycles of alternating voltage, with intervening very small constant negative voltage levels, It is obvious from the figure that the output is not a steady dc, but only a pulsating dc wave. To make the output wave smooth and useful in a DC power supply, we have to use a filter across the load. Since only half-cycles of the input wave are used, it is called a half wave rectifier. 

Welcome to electronics2electrical.com, where students and teachers can ask and answer any question. Get help and answers to any engineering problem including Electrical, electronics, mechanical, telecommunication, instrumentation, computer, mathematics, physics etc. Get answers to questions. Help is always 100% free!

Categories

Most popular tags

power motor dc circuit voltage transformer current system used phase resistance factor ac load synchronous induction energy electric electrical generator problem series frequency capacitor and between plant line speed use transmission meter type advantages single difference mosfet source control function instrument magnetic diode amplifier high bjt machine unit motors parallel diagram winding field shunt define electricity torque value maximum time relay types arduino supply digital armature applications thyristor the working transformers wave on flow operation three instruments coil material state ratio method signal emf effect network formula efficiency theorem disadvantages starting microprocessor test operating law direction controlled different logic transistor single-phase alternating scr inductance loss temperature connected linear rc voltages force characteristics measuring compare measure station wire low conductor principle of materials wattmeter full constant measurement breaker losses device converter bridge phasors nuclear matrix flux drive resistivity loop machines angle switch free rectifier protection core analysis circuits using battery a solar gain thermal generators basic open negative analog number lines friction engineering reactance short gate pole inverter conservation diesel iron resistors capacitance direct main electronic electronics in algebra steam rlc induced relays hysteresis universal transducer computer feedback range distribution work secondary igbt pmmc plants factors capacitors dielectric controller regulation systems design air fault impedance components rotor cable start starter oscillator eddy alternator application semiconductor ammeter is rl average forces damping transformation connection zener electromagnetic biasing minimum insulation pressure balanced permanent moving errors running copper self form stability quality resistor ideal curve over commutation 3-phase sinusoidal arc permeability following peak bias error fuzzy commutator conductors superposition density mechanical rotation construction measured 1 electrons charge memory inductive two transfer explain fuse methods off back to insulating three-phase tariff locomotive nodal installation welding heating rms surge rating generation potentiometer coupled shaded rate capacity storage adc excitation active pure delta star harmonics reluctance microcontroller

9,314 questions

8,053 answers

171 comments

3,305 users

...